LAB 9. INTRODUCTION TO C6713 DSK, CCS, SIMULINK & IMPLEMENTATION

A PC is required to run Code Composer Studio which is required to compile and download code to (run on) the DSP. (Note: This is the same Lab. as Lab.1 in the Real-Time set of Labs.)

Figure 1: Typical lab setup

©2012GM
0.1 DSP Board Highlights

- Texas Instruments TMS320C6713 DSP operating at 225 MHz
- An AIC23 stereo codec
- 8 MB of synchronous DRAM
- 512 KB of non-volatile Flash memory
- 4 user accessible LEDs and DIP switches
- Configurable boot options
- Standard expansion connectors for daughter card use
- JTAG emulation through on-board JTAG emulator with USB host interface or external emulator
- Single voltage power supply (+5V)
0.2 Functional Overview of DSP Board

The DSP on the 6713 DSK interfaces to on-board peripherals through a 32-bit wide EMIF (External Memory Interface). The SDRAM, Flash and CPLD are all connected to the bus. EMIF signals are also used for daughter cards. The DSP interfaces to analog audio signals through an on-board AIC23 codec and four 3.5 mm audio jacks (microphone input, line input, line output, and headphone output). The codec can select the microphone or the line input as the active input. The analog output is sent to both the line out and headphone out connectors. The line out has a fixed gain, while the headphone out allows for an adjustable gain.

A programmable logic device called a CPLD (Complex Programmable Logic Device) is used to implement logic that ties the board components together. The DSK includes 4 LEDs and a 4 position DIP switch which allow for interactive feedback.

Simulink communicates with Code Composer Studio through Real-Time Workshop. Code Composer Studio communicates with the DSK through an embedded JTAG emulator with a USB host interface. Matlab communicates with CCS via Link for Code composer Studio. The DSK can also be used with an external emulator through the external JTAG connector.

0.3 Basic Operation of the Board

1. Connect the included power supply to the DSK.

2. Connect the DSK to your PC with the USB cable.

3. Launch Matlab.

0.4 Simulink, Real-Time Workshop, Embedded Target for TI C6000 DSP and Link for Code Composer Studio: An Overview

This section describes how to use Simulink, Real-Time Workshop, Embedded Target for TI C6000 DSP and Link for CCS with CCS. Simulink uses a block based approach to algorithm
design and implementation. Real-Time Workshop converts these Simulink models into ANSI C/C++ code that can be compiled using CCS. The Embedded Target for TI C6000 DSP provides the APIs required by Real-Time Workshop to generate code specifically for the C6000 platform. Link for CCS is used to invoke the code building process from within CCS to build an executable. This code can then be downloaded on the target DSP from where it runs. The data on the target is accessible in CCS or in Matlab via Link for CCS or via Real-Time Data Transfer (RTDX). This thesis primarily uses RTDX for accessing data on the target DSP.

0.4.1 Initial Configuration

To verify that CCS is properly installed on the system, enter

ccsboardinfo
at the Matlab command line. Matlab should return information similar to the following listing:

<table>
<thead>
<tr>
<th>Board</th>
<th>Board</th>
<th>Proc</th>
<th>Processor</th>
<th>Processor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Num</td>
<td>Name</td>
<td>Num</td>
<td>Name</td>
<td>Type</td>
</tr>
<tr>
<td>0</td>
<td>C6713 DSK</td>
<td>0</td>
<td>CPU_1</td>
<td>TMS320C6x1x</td>
</tr>
</tbody>
</table>

To ensure Embedded Target for TI C6000 DSP is installed, enter

c6000lib

Matlab should display the C6000 block library containing the libraries: C6000 DSP Core Support, C62x DSP Library, C64x DSP Library, C6416 DSK Board Support, C6701 EVM Board Support, C6711 DSK Board Support, C6713 DSK Board Support, RTDX Instrumentation, TMDX326040 Daughtercard Support.

0.5 Configuration Parameters for C6000 Hardware

This section describes how configure Simulink and Real-Time Workshop for use with the C6713DSK. These configuration setting are required and are similar for all the experiments. This is also the first step before any experiment. Any deviations from these parameters are indicated in the experiments.

1. Launch Matlab

2. At the Matlab command line, type

 `simulink`

 to launch Simulink

3. Create a new model in Simulink.
4. To open the **Configuration Parameters**, select **Simulation→Configuration Parameters**

5. In the **Select** tree, chose the **Real-Time Workshop** category.

6. For **Target Selection**, choose the file `ti_c6000.tlc`. Real-Time Workshop will automatically change the **Make command** and **Template makefile** selections.

7. Choose the **Optimization** category in the **Select** tree. For **Simulation and Code generation**, un-select **Block reduction optimization** and **Implement logic signals**.

8. Choose the **TI C6000 target sele...**. Set **Code generation target type** to **C6713DSK**.

9. Choose the **TI C6000 compiler**. Set **Symbolic debugging**.

10. In the **Select** tree, choose the **Debug** category. Select **Verbose build** here.

11. In the **Select** tree, choose the **Solver** category. Ensure that Solver is set to **Fixed type / discrete**.
1.1 Experiment 1: Introduction to Simulink and Code Composer Studio

This experiment describes how to use Simulink in conjunction with code composer studio for basic signal representation and manipulation. In this experiment, an audio effects processor is created to echo, reverberation and flange. To run this model, a microphone is connected to the Mic In connector of the C6713 DSK and speakers are connected to the Line Out of the DSK. To download and run the model, the following tasks are completed:

- Use blocks from Simulink and other blocksets to complete the model
- Add the Embedded Target for TI C6000 DSP blocks that let your signal sources and output devices communicate with your C6713 DSK
- Add the C6713 DSK target preferences block from the C6000 Target Preferences library to your model. Verify and set the block parameters for the target hardware.
- Set the configuration parameters for the model, including
 - Configuration Parameters such as simulation start and stop time and solver options.
 - Real-Time Workshop options such as target configuration and target compiler selection
- Build the model to the selected target.
• Test the model running on the target by changing the input to the target and observe
the output from the target.

1.1.1 Building a Simple I/O system with the C6713 DSK

File name: simpleioworks.mdl

To build the model for a Single Audio Effect, follow these steps:

1. Perform the steps in section 2.4.1 and 2.5.

2. The DSK has four input and output jacks: **Headphone, Line Out, Line In,** and
Mic In. The goal is to implement a system that accepts an audio signal via the **Mic
In** jack and passes that signal through, unchanged, to the **Headphone** jack.

3. Select the Simulink Library Browser window and select Embedded Target for TI C6000.
Within this group, select the C6713 DSK Board Support library. There will be five (5)
blocks displayed: ADC, DAC, LED, Reset, and Switch.

4. Place the ADC (Analog-to-Digital Converter) and DAC (Digital-to-Analog Converter)
blocks on your model by clicking and dragging.

5. Once they are on your model, connect the two, as shown below:

6. Double clicking a block displays the block parameters. While some parameters are
userdefinable, others are not. The ADC source field can be set to either Iic In or Line
In. If the input is from the microphone then the field should be set to Mic In; otherwise,
it should be set to Line In. In the ADC block, Stereo should be unchecked and the
output data type set to integer. **NOTE:** The sample rate can also be set here. For
most applications, this is either set to 8kHz (speech applications) or 44.1kHz (music
applications). The Samples per Frame parameter tells the system how many samples to process at one time. The greater the samples per frame, the longer it takes to process the signal (due to memory needs and computational load).

7. Double click the DAC block. Ensure that the Word Length field is the same (16-bit) for both the ADC and DAC blocks.

8. Save the model:

 Select File > Save As > ...location

9. Ensure that the hardware is connected properly by:

 (a) Connecting the microphone to the Mic In jack.
 (b) Connecting the headphones to the Headphone jack.

10. The model is now complete and ready to run. Verify that the DSK board is connected properly. Use the Incremental Build command on the Simulink model toolbar (the icon with the 3 arrows) to begin compiling the model and transferring the code to the DSK.

11. If this is the first time the board has been used since turning on the computer, a DSK Startup window will open temporarily to configure the board.

12. The system will first compile code in Matlab, then Code Composer Studio (CCS) will be opened, where assembly code will be compiled and loaded onto the DSP. Once in CCS, a progress window will open as the code is loaded onto the board.

13. The program, once loaded will begin to run. Test the model by speaking into the microphone and listening to your speech through the headphones. After verifying that the code works, stop the program by using the Halt command in CCS. Close CCS and return to the model in Simulink.
1.1.2 Designing a single echo effect in real time

File name: singleechoworks.mdl

In the above section, a basic I/O system for audio was built, compiled and run. This section investigates data manipulation and representation on the DSK by designing a basic audio processing system.

In this section, an echo filter is designed. An echo is a delayed, attenuated version of the original signal. The difference equation describing a system with a single echo is defined as $y[n] = x[n] + ax[n - D]$, where a is the gain and D is the delay. The figure below shows the Simulink block diagram that implements this. Simulink allows one to simulate models before implementing them on the target hardware. This enables one to both debug the model and quickly assess the effects of parameter changes.

1. To simulate the model in Simulink, change the model shown above so that the ADC is replaced by Signal from Workspace and the DAC is replaced by Signal to Workspace.

2. In Matlab, load an input file, for example:

```matlab
load audiofrag.mat
```

This file is sampled at 22050Hz. Set the input signal to

```matlab
audiofrag
```

and the output signal to

```matlab
echo
```
3. Run the simulation by clicking the 'play' button. The text box to the left of the triangle indicates how long (in seconds) the simulation will run for.

4. When the simulation has stopped, switch back to the Matlab window and listen to the output that was created using the command:

\texttt{soundsc(echo)}

You should hear the echo.

5. In the Simulink model, change the delay and gain by double clicking on the desired block and explore the effect of each on the output signal.

6. Now implement the single echo in real-time using the DSP board by replacing the Signal from Workspace block with ADC and the Signal to workspace block with DAC. The model should look like figure 3.2 below. Build and run the model (using the Incremental Build button on the model toolbar).

7. Finally, from the TI C6000 Target Preferences block library, add the C6713DSK target preferences block. This block is not connected to any other block in the model.

8. Test the model using the microphone (Mic In) and a pair of headphones (Headphone).

1.1.3 Real time audio revberation model

File name: audiorevworks.mdl

In this section a model that simulates audio revberation is created and built. Revberation is the result of an infinite number of echoes added together, and can be represented mathematically as $y[n] = x[n] + ax[n - D] - by[n - D]$, where a and b are the gains and D is the delay. For this experiment, a microphone is connected to the Mic In connector on the
C6713 DSK and speakers (and an oscilloscope) connected to the Line Out connector on the C6713 DSK. To test the model, speak into the microphone and listen to the output from the speakers.

1.1.4 Building the audio reverberation model

1. Open Simulink.

2. Create a new model by selecting File -¿ New -¿ Model from the Simulink menu bar.

3. Use Simulink blocks to create the following model.

4. The Integer Delay block is in Discrete library of the Simulink blockset. The Gain block is in the Commonly Used library of the simulink blockset. The Line In and Line Out block for the C6713 DSK are in the C6713 Board Support library of the Embedded Target for TIC6000 blockset.

5. From the TI C6000 Target Preferences block library, add the C6713DSK target preferences block. This block is not connected to any other block in the model.
6. Click the C6713 DSK ADC block to select it. Select Block Parameters from the Simulink Edit menu. Set the following parameters for the block:

 • Select the +20 dB mic gain boost check box
 • For Output data type, select Double from the list
 • Set Scaling to Normalize
 • Set Source gain to 0.0
 • Enter 64 for Samples per frame

7. For ADC source, select Mic In.

8. Click OK to close the Block Parameters: ADC dialog.

9. Now set the options for the C6713 DSK DAC block.

 • Set Scaling to Normalize
 • For DAC attenuation, enter 0.0
Set Overflow mode to Saturate.

10. Click OK to close the dialog.

11. Open the Configuration Parameters dialog, select Solver on the Select tree, and set the appropriate options on the Solver pane for your model and for the target.
 - Under Solver options, select the fixed-step and discrete settings from the lists.
 - Set the Fixed step size to auto and select Single Tasking for the Tasking mode.

12. Build and run the model (using the Incremental Build button on the model toolbar).

13. Speak into the microphone connected to the board. The model should generate a reverberation effect out of the speakers, delaying and echoing the words you speak into the mike.

1.1.5 **Real time audio flange model**

File name: audioflangerworks.mdl

A flange effect is an audio effect, which is achieved by combining to identical signal with each other, with one signal delayed by a gradually changing amount. The difference equation for the flange effect is given by,\[y[n] = x[n] + ax[n - d(n)] \], where the time varying delay is given by,\[d(n) = D + \frac{D}{2}(1 - \sin(\frac{2\pi f_d n}{f_s})) \] where \(D \) is a fixed delay, \(f_d \) is the flanging frequency, and \(f_s \) is the sampling rate. The figure below shows the Simulink block diagram that implements this system.

1. Again, start by creating a simulation model of this system. It is identical to the real time model in the figure above except that the ADC and DAC are replaced by Signal From Workspace and Signal To Workspace.

2. Load the audio file, audiofrag.mat, or your own recorded speech or music files. Run the simulation.
3. You should hear the flange effect.

4. Now implement the Flange Effect system in real-time using the DSP board. The model should look like figure 3.4. Build the model (using the Incremental Build button on the model toolbar). Once the program is built, it will begin running on the DSK.

5. Test the system using recorded music or speech played through the Line In connector of the DSK and a pair of headphones connected to the Headphone connector.

(The material in this lab handout is derived principally from S. Ganapathi’s M.Sc. thesis (2006).)