April 6, 2007
Answer Question Section 9.4

Problem #7
\[\int \frac{\sin x}{2 + \cos x} \, dx \]
\[u = 2 + \cos x \]
\[du = -\sin x \, dx \]
\[-du = \sin x \, dx \]
\[\int \frac{\sin x}{2 + \cos x} \, dx = \int -\frac{1}{u} \, du = -\ln |u| + C = -\ln |2 + \cos x| + C \]

Problem #11
\[\int x \cos x \, dx \]
\[u = x \quad dv = \cos x \, dx \]
\[du = dx \quad v = \sin x \]
\[\int x \cos x \, dx = x \sin x - \int \sin x \, dx = x \sin x - (-\cos x) + C = x \sin x + \cos x + C \]

Problem #15
\[\int_{0}^{\pi/3} \sin x \, dx = \left[-\cos x \right]_{0}^{\pi/3} = \left[-\cos \frac{\pi}{3} \right] - \left[-\cos 0 \right] = -\frac{1}{2} + 1 = \frac{1}{2} \]

Section 8.5
Approximation for the change in \(z \) as \(x \) moves from \(a \) to \(a + dx \) and \(y \) moves from \(b \) to \(b + dy \) is \(dz = f_x(a, b) \, dx + f_y(a, b) \, dy \)