April 20, 2007
Answer questions, Section 12.1

Problem #5

\(y(x) = Ce^{x^2} \)

Claim Solution to \(y' = 2xy \)
Is it indeed a solution?

\(y(x) = Ce^{x^2} \)
\(y'(x) = Ce^{x^2} (2x) \)

Substitution
\(y' = 2xy \)
\(Ce^{x^2} (2x) = 2x \left(Ce^{x^2} \right) \)

Since this is a true statement, the function \(y(x) \) is a solution

Problem #9

Given the differential equation \(y' = \frac{y}{x^2} \), is \(y = Ce^{-1/x} \) a solution?

\(y = Ce^{-1/x} \)
\(y' = Ce^{-1/x} \left(\frac{1}{x^2} \right) \)

If we substitute \(y \) and \(y' \) into the differential equation, we have
\(y' = \frac{y}{x^2} \)
\(Ce^{-1/x} \left(\frac{1}{x^2} \right) = \frac{Ce^{-1/x}}{x^2} \)

Since these are equal, this is a solution

Problem #13

Given \(y_p = e^x + C \). Claim this is a solution to the boundary value problem
\(y' = e^x, y(0) = 0 \).

The fact that \(y(0) = 0 \) tells us when \(x = 0 \), then \(y = 0 \). This allows us to find \(C \).
Plug these values for \(x \) and \(y \) into the solution, I have \(0 = e^0 + C \) or \(0 = 1 + C \); so \(C = -1 \).
The solution to the boundary value problem \((y' = e^x, y(0) = 0) \) is \(y = e^x - 1 \).