Lecture: Sec. 8.1

Definition: A function of two variables has two input variable, often x and y, and one output variable, often z. The input variables are the independent variables and the output variable is the dependent variable.

The domain of the function is all inputs which make sense, collectively.

Example: $f(x, y) = x^2 + 2y^2 + 3xy$
Find $f(1, 3) = 1^2 + 2(3)^2 + 3(1)(3) = 28$

Example: Find the domain of the function
$f(x, y) = \sqrt{x + y}$
domain: $x + y \geq 0$
$
\{(x, y) | x + y \geq 0\}$

Graph of a function of two input variables:
Example:
$f(x, y) = \sqrt{x^2 + y^2 + 1}$

Example:
$f(x, y) = x^2 - y^2 + 1$
Level curves:
Dark is a low point, light is a high point.

Find the equation of the level curves for $k = 1, 2, 3, 4$

Level curve for $k = 1$ (This means the level curve for a height 1 unit up; so $z = 1$) would be the curve

Want to solve

$$f(x, y) = \sqrt{x^2 + y^2 + 1}$$

$$\sqrt{x^2 + y^2 + 1} = 1$$

$$x^2 + y^2 + 1 = 1$$

$$x^2 + y^2 = 0$$

$$x = 0, y = 0$$

This would just be a point at $(0, 0, 1)$
For $k = 2$,
\[
\sqrt{x^2 + y^2} + 1 = 2 \\
x^2 + y^2 + 1 = 4 \\
x^2 + y^2 = 3
\]
So this is a circle, centered at the origin, radius $\sqrt{3}$.

If $k = 4$,
\[
\sqrt{x^2 + y^2} + 1 = 4 \\
x^2 + y^2 = 15
\]
circle, centered at the origin, radius $\sqrt{15}$

Find the equation of the level curves for $k = 2$
\[x^2 - y^2 + 1 = 2\]
\[x^2 - y^2 = 1\]

Suppose we want the level curve for \(k = 4\)
\[x^2 - y^2 + 1 = 4\]
\[x^2 - y^2 = 3\]

What about \(k = -4\)?
\[x^2 - y^2 + 1 = -4\]
\[x^2 - y^2 = -5\]
\[y^2 - x^2 = 5\]