How to Figure a Car Payment

We begin with a formula that seems to have nothing to do with cars or money.

Fact. If $\alpha \neq 1$, then

$$1 + \alpha + \alpha^2 + \alpha^3 + \cdots + \alpha^m = \frac{1 - \alpha^{m+1}}{1 - \alpha}.$$

Why is it true? Multiply $(1 - \alpha)(1 + \alpha + \alpha^2 + \alpha^3 + \cdots + \alpha^m)$. If you’re real careful, you’ll get:

$$1 + \alpha + \alpha^2 + \alpha^3 + \cdots + \alpha^m + \alpha - \alpha^2 - \alpha^3 - \cdots - \alpha^{m+1}.$$

Everything cancels except the terms on the ends, leaving us with $1 - \alpha^{m+1}$. That proves the fact (think about it).

(This might remind you of a formula we saw when we proved the derivative power rule—$(x^n)' = nx^{n-1}$—namely:

$$A^n - B^n = (A - B)(A^{n-1} + A^{n-2}B + \cdots + AB^{n-2} + B^{n-1}).$$)

In fact, it is the same formula, with $A = 1$ and $B = \alpha$.)

Now, let’s suppose we’ve borrowed $10,000 at 8 percent, which we’ll pay off in 36 equal monthly payments. How much will that monthly payment be? Let’s call the payment amount P. Our first payment will be made one month from now. To the lender, it has a present value equal to P divided by $1 + (.08/12)$. Another way to phrase that is, the present value of the first monthly payment equals P times $(1 + (.08/12))^{-1}$. The second payment has a present value of P times $(1 + (.08/12))^{-2}$. The third payment’s present value is $P(1 + (.08/12))^{-3}$; and so on. We’re going to be using this number $(1 + (.08/12))^{-1}$ so much that we should give it a name. Let’s set

$$\alpha = (1 + (.08/12))^{-1}. \quad (1)$$

The choice of the symbol α is not an accident.

The present value of all of the monthly payments is

$$P\alpha + P\alpha^2 + P\alpha^3 + \cdots + P\alpha^{36} = P(\alpha + \alpha^2 + \cdots + \alpha^{36})$$

$$= P\alpha(1 + \alpha + \alpha^2 + \cdots + \alpha^{35}). \quad (2)$$

Note the tricky change in the second line. By our formula,

$$1 + \alpha + \alpha^2 + \cdots + \alpha^{35} = \frac{1 - \alpha^{36}}{1 - \alpha}.$$

Therefore, the present value of all of the monthly payments must be (substitute this into (2)):

$$P\alpha \left(\frac{1 - \alpha^{36}}{1 - \alpha} \right).$$
This must equal the value of the loan, which is $10,000. In other words, we must have

\[10,000 = P\alpha \left(1 - \alpha^{36}\right), \]

or

\[P = \frac{10,000}{\alpha} \left(\frac{1 - \alpha}{1 - \alpha^{36}}\right). \quad (3) \]

For our problem, \(\alpha = .993377 \) and \(\alpha^{36} = .787255 \). When we plug these into (3) we get \(P = 313.364 \), which rounds to $313.36.

Suppose the interest rate is 9%, the loan is for $8500, and we’re borrowing for 24 months. Do we have to do the computation all over again? No: not if we work out a general formula. The crucial numbers are \(L \) (the amount of the loan), \(r \) (the interest rate), and \(N \) (the number of monthly payments). The most significant change will be in the number we’ve called \(\alpha \). For an interest rate \(r \), the value of \(\alpha \) we get will be \((1+r/12)^{-1} \). (Compare this to (1), where \(r = .08 \).) But also, where we have a ‘36’ in (3), we’ll have an \(N \) in the general formula. Putting it all together, we get

\[P = \frac{L}{\alpha} \left(\frac{1 - \alpha}{1 - \alpha^{N}}\right), \quad (4) \]

where \(\alpha = (1 + r/12)^{-1} \).

We can make this a little simpler—with a little algebra. Notice that \(1/\alpha = 1 + r/12 \) and that

\[1 - \alpha = 1 - \frac{1}{1 + r/12} = \frac{r/12}{1 + r/12}. \]

If we plug these into (4) we get

\[P = L(1 + r/12) \left(\frac{r/12}{(1 + r/12)(1 - \alpha^{N})}\right) = \frac{Lr}{12(1 - \alpha^{N})}. \quad (5) \]

If \(r = .09 \), \(L = 8500 \), and \(N = 24 \), then \(\alpha = .992556 \), and the monthly payment is $388.32.

Another example: mortgage. You buy a house for $250,000, taking out a 30-year mortgage at 7% interest. What is the monthly payment? Here \(L = 250,000 \), \(r = .07 \), and \(N = 360 \). We compute \(\alpha \) and get .9942. Plugging these into the formula (5), we get a monthly payment of $1663.26.

A final wrinkle: non-monthly payments. Some lenders allow you to make quarterly, semi-annual, or twice-monthly payments. How can we adapt our formula (5) to handle these? What’s changed here is the number of times a year we’ll be compounding the
interest. It was 12, and now it’s \(n \). It looks like all we have to do is replace the ‘12’ with an \(n \)—being careful to also replace the ‘hidden’ 12 in the formula for \(\alpha \) with an \(n \). But is this all? Not quite. The number \(N \) was the number of months in the loan. Now it’s the number of \textit{payments}. If you look back to our original derivation, you’ll see that that’s what it always was, but our emphasis on monthly payments tended to disguise this fact.

The new, final, super-duper general formula for loan amortization is

\[
P = \frac{Lr}{n(1 - \alpha^N)},
\]

where \(L \) is the loan amount, \(r \) is the (annual) interest rate, \(n \) is the number of times per year that interest will be compounded, \(N \) is the number of payments, and

\[
\alpha = (1 + (r/n))^{-1}.
\]

\textbf{Example: a mortgage with quarterly payments.} We’ll use the same loan amount as before—$250,000—with the same 7\% interest rate, and also over 30 years. Now, with \(n = 4 \), our value of \(\alpha \) is \((1 + .07/4)^{-1} = .982801\). The number \(N \) is 120. Plugging these in, the quarterly payment is $4998.29.

\textbf{Example: a mortgage with twice-monthly payments.} We use the same interest rate, term, and loan amount from the previous problem. Now \(n = 24 \), yielding \(\alpha = (1 + .07/24)^{-1} = .997092\). The number of payments is 720. Plugging it all in, we get a monthly payment of $831.27.

\textbf{A question.} Although the quarterly payment is made every three months, it is actually a little larger than three of the monthly payments ($1663.26) calculated above. Also, the twice-monthly payment is a little smaller than half of the monthly payment. Why do you think this is so?

This is non-trivial mathematics, and I know some of you are finding it tough. But this math has a payoff: it gives you \textit{power}.