Flow Chart for Evaluating \(\lim_{x \to b} f(x) \)

Is \(b \) a number?

- Yes: Divide numerator and denominator by highest power of \(x \) in denominator.
- No, \(b = \pm \infty \): Take limit in numerator and denominator separately, using \(\lim_{x \to \pm \infty} \frac{a}{x^n} = 0 \).

Near \(x = b \), is \(f(x) \) given by a single formula made up of continuous functions?

- Yes: Evaluate \(\lim_{x \to b} f(x) \) \(x \to b^- \) and \(\lim_{x \to b^+} f(x) \) separately.
- No: \(f(b) \) defined?
 - Yes: \(\lim_{x \to b} f(x) = f(b) \). \(f(b) \) looks like \(\frac{k}{0} \). Does \(k = 0 \)?
 - Yes: Factor numerator and denominator and cancel. Then take the limit.
 - No: \(\lim_{x \to b} f(x) \) does not exist.
 - No: Analyze further to decide if limit is \(\pm \infty \) on each side.