1. Using the multi-scale perturbation method, determine the large-time solution dynamics in the Van Der Pol equation

\[x'' + \epsilon(x^2 - 1)x' + x = 0, \quad \epsilon \ll 1. \]

2. Using the multi-scale perturbation method, determine the large-time solution dynamics in the following equation:

\[\frac{d^2 x}{dt^2} + x + \epsilon \frac{dx}{dt} \left[1 - \left(\frac{dx}{dt} \right)^2 + \beta \left(\frac{dx}{dt} \right)^4 \right] = 0, \quad \epsilon \ll 1, \]

where \(\beta \) is a constant parameter. How does the dynamics depend on \(\beta \)?

3. Using the multi-scale perturbation method, determine the large-time solution dynamics in the forced Duffing equation

\[x'' + x + \epsilon cx' + \epsilon x^3 = \epsilon F \cos t, \quad \epsilon \ll 1, \]

where \(c \) and \(F \) are damping and forcing constants.