Shock wave diffraction calculations using very high order difference schemes

Jing Gonga,*, Qaisar Abbasa, Craig Lawb, and Jan Nordströma,b,c

aDepartment of Information Technology, Scientific Computing Division, Uppsala University, Box 337, SE-751 05 Uppsala, Sweden
bSchool of Mechanical, Industrial and Aeronautical Engineering, University of the Witwatersrand, PO WITS 2050, Johannesburg, South Africa.
cDepartment of Aeronautics and Systems Integration, The Swedish Defense Research Agency, SE-164 90 Stockholm, Sweden
*Corresponding author: email: jing.gong@gmail.com

Abstract:

Shock wave diffraction over convex walls have previously been investigated both experimentally and numerically [1, 2]. In this paper, we use numerical simulations to investigate the flow over a 90 degree sharp corner and multi-facet geometries. The main focus is a two-facet geometry and flow with Reynolds number up to 10^6. We analyze how very weak features such as shear layers and vortices can coexist together with strong features such as shocks.

To capture all these features we use a very high order difference schemes (4th, 6th, 8th order) [3, 4] together with a locally added amount of artificial dissipation [5] in the vicinity of shocks. The accuracy of the results is verified by comparison with experimental results.

Our technique with weak no-slip boundary conditions [3] provides us with a way to decide when the computation is resolved. For a coarse mesh we have a slip velocity at the wall, as the size of the mesh decreases, the slip velocity goes to zero. For a sufficiently fine mesh, the computation is well resolved.

With the maximum amount of computational resources available, we construct the finest mesh that we can manage in a reasonable time. Next we run on the highest Reynolds number that can be resolved (such that we have a vanishing no-slip velocity). This procedure optimize our computational resources for a given flow case.

References: