Given Notes

Sequence of R.V.

Random vector \(X = [X_1, X_2, \ldots, X_n] \)

\[
P\{X \in D\} = \int_D f_X(x) \, dx = \int_{x_1, x_2, \ldots, x_n} f_{X_1, X_2, \ldots, X_n}(x_1, x_2, \ldots, x_n) \, dx_1 \, dx_2 \ldots \, dx_n
\]

where \(f_X(x) = \frac{\partial^n F(x)}{\partial x_1 \partial x_2 \ldots \partial x_n} \)

Joint or multivariate pdf of R.Vs \(X_i \):

\[
P_X(x) = P(X_1 = x_1, \ldots, X_n = x_n)
\]

Joint Distribution

Note:

\[
P(x_1, x_2, x_3) = F(x_1, x_2, x_3)_{n=4}
\]

\[
f(x_1, x_2) = \int f(x_1, x_2, x_3, x_4) \, dx_3 \, dx_4
\]

Transformations

\(X = [X_1, X_2, \ldots, X_n] \)

\(Y_1 = g_1(X), \ldots, Y_n = g_n(X) \)
Recall a RV \(X, Y \)
\[Z = g(X, Y) \quad W = h(X, Y) \]

and \(f_{Z,W}(z,w) \)

\[f_{Z,W}(z,w) = \frac{f_{X,Y}(x,y)}{|J(x,y)|} \quad + \quad \ldots \]

where \(J(x,y) = \det \begin{bmatrix} \frac{\partial x}{\partial x} & \frac{\partial x}{\partial y} \\ \frac{\partial y}{\partial x} & \frac{\partial y}{\partial y} \end{bmatrix} \)

\(\delta \) for a RV \(X, X_2, \ldots, X_n \)
\[Y_1 = g_1(X), \quad \ldots \quad Y_n = g_n(X) \]

\[f_{Y}(y) = \delta \]

Solution: \(\text{End with } (x_1, x_2, \ldots, x_n) \) of \(g_1(x_1, x_2, \ldots, x_n) = y_1, \quad g_2(x_1, x_2, \ldots, x_n) = y_2, \quad \ldots \quad g_n(x_1, x_2, \ldots, x_n) = y_n \)

\[f_{Y}(y) = \frac{f_{X}(x_1, x_2, \ldots, x_n)}{|J(x_1, x_2, \ldots, x_n)|} \quad + \quad \ldots \]
Independent Experiments vs Related Trials

Recall: Cartesian product of 2 sets S_1, S_2

$$S = S_1 \times S_2$$

S - sample space

All events of the form $A \times B$ where A event in S_1

B event in S_2.

Let us say that

$$P(A \times S_2) = P(A) \quad P(S \times B) = P(B)$$

where $P(A)$ prob. of event A in event S_1

$P(B)$ prob. of event B in event S_2.

$$P(A \times S_2) = P(A)$$

motivated by the fact that the event $A \times S_2$ if the event S occurs if the event A or event S_2 occurs no matter what the outcome of S_2.

What about events $A \times B$? One cannot always say

determined in terms of P_1 or P_2.

$$P(A \times B)$$

can be determined by counting in the usual way. If events A, B indep.
Ex. 3.3

A ball drawn from each box.
P, ball from B₁ white, and ball from B₂ red; Y = ?

Easily seen that \(P(AB) = P(A)P(B) \)

Ex. 3.4

Coin tossed twice

\[P(H_1H_2Y) = P(H_1)P(H_2) \]

How about \(P(Y) \) heads at the first toss

\[= P(H_1H_2Y) + P(H_1H_2Y) \]

\[= P(H_1)P(H_2) + P(H_1)P(H_2) \]
Then \(P(A \times B) = P(A) \times P(B) \)

Ex: \(P(y|y) = P(y) \times P(y) \)

Independent Exps.

Given RVs defined on product spaces \(S = S_1 \times S_2 \)

- Let \(X : S_1 \rightarrow \mathbb{R} \) and \(Y : S_2 \rightarrow \mathbb{R} \)
- \(S_1 \times S_2 \) is the set of all outcomes \(\{(s_1, s_2) \} \)

In the product space \(S_1 \times S_2 \), always \(X, Y \) are such that

\[X(y, y_2) = X(y_2) \quad Y(y, y_2) = Y(y_2) \]

That is \(X \) depends only on outcomes in \(S_1 \)

\[Y \]

Thm 6.2 If \(X \) and \(Y \) independent then \(X, Y \) indeps.

Proof: Let \(A_x = \{ X = x \} \) \(\text{in} \ S_1 \) \(B_y = \{ Y = y \} \) \(\text{in} \ S_2 \)

In \(S_1 \times S_2 \), \(A_x \times B_y \) is \(\{(x, y) \} \)
If $A \times S_2 = S \times B$ by indp., then X, Y indp.

On 7, suppose

$$S^* = S_1 \times S_2 \times \ldots \times S_n$$

combined exp. but X_i defined only on y_i of S_i.

That is $X_i(y_1, y_2, \ldots, y_n) = X_i(y_i)$ $i = 1, \ldots, n$

If exp. S_i independent, then X_i indp.

Now suppose RV X defined on exp. S in exp. S

performed n times generating $S^* = S_1 \times \ldots \times S_n$.

In this exp., define RV X_i by

$$X_i(y_1, y_2, \ldots, y_n) = X_i(y_i) \quad i = 1, \ldots, n \quad (7-12)$$

From this it follows that $F_i(x_i)$ of $F_i(x_i)$

of X_i of X

Thus, if exp. performed n times, RV X_i defined in (7-12)

are independent or have the same distr. $F(x)$.

Thus RVs i.i.d.
Ex. 7.4 MEASUREMENT ERROR

Measure length \(L \) of object, say \(x \), with instrument of varying accuracy. The \(n \) measurements are \(n \) RVs

\[X_i = \eta + V_i \quad E(V_i) = 0 \quad E(V_i^2) = \sigma_i^2 \]

Assume \(V_i \) measurement error, assume independent.

Want to estimate \(\eta \): \(\hat{\eta} \)

Want to find \(n \) constants \(a_i \): \(\hat{\eta} = a_1x_1 + \cdots + a_nx_n \)

Hence

\[E(\hat{\eta}) = a_1E(x_1) + \cdots + a_nE(x_n) = \eta \]

and

\[\text{Var}(\hat{\eta}) = a_1^2\sigma_1^2 + \cdots + a_n^2\sigma_n^2 \]

is minimum.

Solution: Apply constraint \(a_1 + \cdots + a_n = 1 \) (7-9)

From \(V = a_1\sigma_1^2 + \cdots + a_n\sigma_n^2 - \lambda(a_1 + \cdots + a_n - 1) \)

\[V_{\text{min}} \text{ if } \left(\frac{dV}{da_i} \right)_{a_i = \lambda} = 2\lambda \sigma_i^2 - \lambda = 0 \Rightarrow a_i = \frac{\lambda}{2\sigma_i^2} \]

Inserting in \((7-6) \) we solving for \(\lambda \), get \(\hat{\eta} \):

\[\hat{\eta} \text{ from above} \]
Correlation or Variance Matrices

\[\text{Cov}(X_i, X_j) = \text{C}_{ij} = E[(X_i - \mu_i)(X_j - \mu_j)] \]
\[= E(X_i X_j) - E(X_i)E(X_j) \]

\[\text{Var}(X_i) = \text{C}_{ii} = \sigma_i^2 = E[(X_i - \mu_i)^2] = E(X_i)^2 - (E(X_i))^2 \]

RVs \(X_i \) called mutually uncorrelated if \(\text{C}_{ij} = 0 \) for \(i \neq j \)

In that case, for

\[X = X_1 + \cdots + X_n \]
\[\sigma_X^2 = \sigma_1^2 + \cdots + \sigma_n^2 \]

Ex: 7-5 Sample mean \& sample variance

\[\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \]
\[\bar{V} = \frac{1}{(n-1)} \sum_{i=1}^{n} (X_i - \bar{X})^2 \]

If \(X_i \) uncorrelated with some mean \(E(X_i) = \mu \)

and variance \(\sigma_i^2 \), then \(\sigma_i^2 = \sigma^2 \), then

\[E(\bar{X}) = \mu \]
\[\sigma_{\bar{X}}^2 = \frac{\sigma^2}{n} \]

and \[E(\bar{V}) = \sigma^2 \]
Proof:

(i) \[E(\bar{X})^2 = E \left(\frac{1}{n} \sum_{i=1}^{n} X_i \right)^2 = \frac{1}{n} \sum_{i=1}^{n} E(X_i^2) = \sigma^2 \]

(ii) \(n = 2 \) \[X = X_1 + X_2 \]
\[\sigma_x^2 = \sigma_1^2 + \sigma_2^2 = 2 \sigma^2 \]
\[\frac{X}{2} = \frac{X_1 + X_2}{2} \]
\[\sigma_x^2 = \frac{1}{4} 2 \sigma^2 = \frac{\sigma^2}{2} \]
\[\bar{X} = \frac{1}{2} (X_1 + X_2) \]
\[\sigma_x^2 = \frac{\sigma^2}{n} \]

(iii) For the sample variance \[\bar{V} = \frac{1}{(n-1)} \sum_{i=1}^{n} (X_i - \bar{X})^2 \]
\[E(\bar{V}) = \sigma^2 \]
\(\text{Cov}(i \neq j) \)

Proof: text.
Correlation matrix

\[X = [X_1 \; X_2 \cdots X_n] \]

\[R_n = E \left[\begin{bmatrix} X_1 \\ \vdots \\ X_n \end{bmatrix} \begin{bmatrix} X_1 \\ \vdots \\ X_n \end{bmatrix}^T \right] \]

Covariance matrix

\[C_n = E \left[\begin{bmatrix} X_1 - \mu_1 \\ \vdots \\ X_n - \mu_n \end{bmatrix} \begin{bmatrix} X_1 - \mu_1 \\ \vdots \\ X_n - \mu_n \end{bmatrix}^T \right] \]

\(\mu \): variance of "centered" data \(X_i - \mu_i \)

Properties of \(R_n, C_n \)

\[C = \alpha^T R_n \alpha \geq 0 \quad \forall \; \alpha \neq 0 \]

Proof: \(n = 2 \)

\[E \left[(\alpha X_1 + \alpha_2 X_2)^2 \right] \geq 0 \]

\[= E \left[\alpha^2 (X_1, X_2) (X_1, X_2)^T \right] \]

\[= \sum_{i,j=1}^{2} \alpha_i \alpha_j E(X_i X_j) = \alpha^T R_2 \alpha \]
RV Independence

RV X_i linearly independent if

$$E \left[\left(\sum a_i X_i \right)^2 \right] > 0 \quad \text{all } a_i$$

($E_n \text{ is PD}$)

RV X_i linearly dependent if

$$a_1 X_1 + \cdots + a_n X_n = 0 \quad \text{for some } a_i$$

Show corresponding $Q = 0$

($R_n \text{ is PD}$)

Correlation matrix R_n determinant.

$$R_n \text{ PSD } \Rightarrow |R_n| \geq 0$$

$$R_n \text{ PD } \Rightarrow |R_n| > 0$$
Normal Vectors

Recall, \(x, y \) jointly normal if

\[
fx(y) = A \exp \left[-\frac{1}{2(1-r^2)} \left(\frac{(x-\mu_1)^2}{\sigma_1^2} - 2r \frac{(x-\mu_1)(y-\mu_2)}{\sigma_1 \sigma_2} + \frac{(y-\mu_2)^2}{\sigma_2^2} \right) \right]
\]

\[
A = \frac{1}{2\pi \sigma_1 \sigma_2 \sqrt{1-r^2}} \quad |r| < 1
\]

Recall \(r = \frac{\text{Cov}(x,y)}{\sigma_x \sigma_y} \)

Recall also equivalent statements:

2 RV unrelated if:

\[
\text{Cov}(x,y) = 0 \quad \text{or} \quad \rho_{xy} = 0 \quad \text{or} \quad E(xy) = E(x)E(y)
\]

Also, \(x \perp y \) if:

\[
E(xy) = 0
\]

Ex: 6-30 show that for \(f(x,y) \) given above (using \(\sigma_1 = \sigma_2 = 0 \))

\[
E(xy) = \rho \sigma_1 \sigma_2
\]
N random variables X_1, X_2, \ldots, X_n

jointly normal if joint pdf $f(x)$

$$f(x) = \frac{1}{\sqrt{(2\pi)^n \Delta}} \exp \left\{ -\frac{1}{2} X C^{-1} X^T \right\}$$

where $X = [X_1, X_2, \ldots, X_n]^T$

C covariance matrix

$\Delta = \text{det}(C)$
7.3 MEAN SQUARE ESTIMATION

Ex: S - sample of all children in a community.

Y - RV: \(S \rightarrow \mathbb{R} \) height of a child.

i.e. \(y(y) = \text{a number for child } y \).

Problem: Estimate height by a constant \(c \).

i.e. \(\text{Min } E \{ (Y-c)^2 \} = \int_{-a}^{a} (y-c)^2 f(y) \, dy \) (7.63)

\[\frac{\partial E}{\partial c} = \int_{-a}^{a} 2(y-c) f(y) \, dy = 0 \]

\[c = \int_{-a}^{a} y f(y) \, dy = E(Y) \]

Ex: Subtract now that each child is weighted.

On the basis of this, the height can be improved.

Problem: Estimate height \(Y \) by a function \(c(x) \) where \(x \) is weight of child.
Minimise MS estimation

So: \[\min e = \mathbb{E} \left[(Y - c(x))^2 \right] \]

\[e = \iint (y - c(x))^2 f(y|x) dxdy \]

\[= \iint (y - c(x))^2 f(y|x) dxdy \]

\[e = \int f(x) \int (y - c(x))^2 f(y|x) dy \] \[dx \]

smallest integrand possible.

Hence \(e = \min \) if inner integral minimum for every \(x \).

But \(\int (y - c(x))^2 f(y|x) dy \) same as \(\int (y - c(x))^2 f(y) dy \) (7.11)

if \(e \to c(x) \) and \(f(y) \to f(y|x) \).

\[\therefore \text{Solution} \quad c(x) = \int y f(y|x) dy = E[Y|X = x] \]

If \(Y = g(x) \), then \(c(x) = g(x) \).

Also, \(\int y f(y|x) dy = \int g(x) \frac{f(y|x)}{f(x)} dy = g(x) \)

And, if \(X, Y \) independent, then \(E[Y|X] = E[Y] = \text{constant} \).

Knowledge of \(X \) has no effect on \(Y \).
Linear MS Estimation

\[y = ax + b \]

\[\text{I.e. } \min_{a,b} E \left((y - (ax + b))^2 \right) = \min_{a,b} e \]

Solution:

\[a = \frac{\mu_1}{\mu_2} = \frac{E(x-\bar{x})(y-\bar{y})}{E((x-\bar{x})^2)} = \frac{\text{cov}(x,y)}{\text{var}(x)} \]

\[b = \bar{y} - a \bar{x} \]

Proof: Ths p. 263

Note: \(x, y \) normal, nonlinear, linear estimate the same.

Orthogonality Principle

From (7-72) can show \(e \) min. if

\[\frac{\partial E}{\partial a} = \frac{\partial E}{\partial b} = 0 \]

\[\frac{\partial E}{\partial a} = E \left[2 (y - (ax + b)) (-x) \right] = 0 \]

\[\Rightarrow E \left[(y - (ax + b)) \cdot x \right] = 0 \]

\(\text{i.e. Estimation error } (y - (ax + b)) \perp x. \)

(Orthogonality Principle)
Homogeneous case:

\[y \sim ax \]

\[\min \ e = E[(y-ax)^2] \]

Ans: \((y-ax) \perp x \)

\[\text{i.e. } E[(y-ax)x] = 0 \]

And \(E[y|x] \) - linear MS estimate of \(y \) given \(x \)

\[E[y|x] = ax \quad \text{where} \quad a = \frac{E(xy)}{E(x^2)} \]
Linear Estimation (Normal One)

\[S = a_1 X_1 + a_2 X_2 + \ldots + a_n X_n \]

is the linear estimate of \(S \) in terms of \(n \) RVs \(X_1, X_2, \ldots, X_n \).

Determine constants \(a_i \) to minimize estimation error

\[E = E \left[(S - S')^2 \right] = E \left[E \left[(S - (a_1 X_1 + \ldots + a_n X_n))^2 \right] \right] \]

\[\text{minimized.} \]

Orthogonality Principle

\[\text{Err} (S - S') = \text{truth} \quad X_i \]

i.e.,

\[E \left[E \left[S - (a_1 X_1 + \ldots + a_n X_n) \right] \cdot X_i \right] = 0 \quad i = 1, 2, \ldots, n \]

Proof: First set \(\frac{\partial E}{\partial a_i} = 0 \) to get above result.

\[\begin{bmatrix} a_1 & a_2 & \ldots & a_n \end{bmatrix} \begin{bmatrix} n_1 & n_2 & \ldots & n_n \\ n_1 & n_2 & \ldots & n_n \\ \vdots & \vdots & \ddots & \vdots \\ n_1 & n_2 & \ldots & n_n \end{bmatrix} = \begin{bmatrix} \sum \left(X_i \right) \\ \sum \left(X_i X_j \right) \\ \vdots \\ \sum \left(X_i^n \right) \end{bmatrix} \]

\[R_{ij} = E \left[X_i X_j \right] \quad R_{ij} = E \left[S X_j \right] \]

\[R = \begin{bmatrix} n_1 & \sum \left(X_i X_j \right) \\ \sum \left(X_i X_j \right) & \sum \left(X_i^n \right) \end{bmatrix} \]

\[R_{ij} = \frac{1}{n} \quad \text{and} \quad a = R^{-1} n \]
7.4 **Stochastic Convergence or Limit Theorems.**

Suppose we want to measure length λ on object $X = a + N$.

Assume N is an integer.

Intuitively, if σ is of order small compared to λ, then observed value $X(a)$ of X in a single measurement is a satisfactory estimate.

Or, in the context of probability,

$$P(|X - a| < \epsilon) > 1 - \frac{\sigma^2}{\epsilon^2}$$

If $\sigma < \epsilon$,

then prob. $|X - a| < \epsilon$ close to 1.

: almost certainly X lies in $(a - \epsilon, a + \epsilon)$

If σ not small compared to ϵ, then take a number of measurements in average.
So underlying probability model in part gives

\[S^2 = S_1^2 \times S_2^2 \cdots \times S_k^2 \]

i.e. experiment is repeated \(n \) times.

If measurements independent, then

\[X_i = a + N_i \]

\(N_i \) zero mean \(\mu_i \) variance \(\sigma_i^2 \)

Then the sample mean

\[\bar{X} = \frac{X_1 + \cdots + X_n}{n} \]

is a RV with mean \(a \) and variance \(\frac{\sigma^2}{n} \).

So intuitively if \(\frac{\sigma^2}{n} \ll \sigma^2 \), set good estimate in a single performance of \(\exp S^2 \) (i.e. \(n \) measurements).

To bound the error, so learn to Chebyshev:
Let n be so large that \[\frac{\sigma^2}{n\sigma^2} = 10^{-4}. \]

Qs: What is prob. that X lies between $\cdot9a$ and $1.1a$?

Tchebychev: \[P \left(a-e < X < a+e \right) > 1 - \frac{\sigma^2}{e^2}. \]

But $e = 0.1a$

So, \[P \left(0.9a < X < 1.1a \right) > 1 - \frac{\sigma^2}{n \cdot (0.1a)^2}. \]

\[> 1 - 10^{-4} \times 10^{-2} = 0.99 \]

So, if NPT performed $n = \frac{10^4 \cdot \sigma^2}{a^2}$. Hence,

almost certainly estimate X if n will be between $\cdot9a$ and $1.1a$.

Law of Large Numbers \((p275\text{Text}) \).

Recall Bernoulli Th. \((p38\text{Text}) \).

Let \(A \) denote event with prob. \(P \) of occurrence in a single trial \(= p \).

If \(n \) denotes \# of occurrences of \(A \) in \(n \) independent trials, then

\[
P\left(\left| \frac{k}{n} - p \right| > \varepsilon \right) < \frac{pq}{n\varepsilon^2} \tag{3.27}
\]

(axiomatic \(\frac{pq}{n\varepsilon^2} \) def. of probability)

Equation (3.27) states that the above 2 can be made compatible with almost any def desired before \(n \) accuracy, (provided we take a large \# of trials) (Proof \(p38\text{Text} \))
The same result can be established as a limit of i.i.d. random variables.

Let \(X_i = 1 \) if \(A \) occurs and \(0 \) otherwise.

Can show that the sample mean

\[
\bar{X}_n = \frac{X_1 + X_2 + \cdots + X_n}{n} \to p
\]

as \(n \to \infty \).

Proof. p.276 Text.
Central Limit Theorem (CLT)

Given n independent $N(0, \sigma^2)$ X_i, the sum
\[X = X_1 + X_2 + \cdots + X_n \]

Then
\[\bar{X} = \frac{X_1 + \cdots + X_n}{n} \]
\[\sigma^2 = \sigma_1^2 + \cdots + \sigma_n^2 \]

CLT states that (under certain regular conditions)
\[F_X(x) \approx \Phi \left(\frac{x - \mu}{\sigma} \right) \]

as $n \to \infty$.

That is, CLT can be expressed as a property of convolutions of positive functions.

Ex: X_1 i.i.d. in $[0, T]$.

\[
\begin{align*}
\frac{1}{T} f_t(x) &\quad \frac{1}{T} \begin{cases} 1 \quad &0 \leq x < T \\ 0 \quad &\text{otherwise} \end{cases} \\
X = X_1 + X_2 &\quad X = X_1 + X_2 + X_3
\end{align*}
\]