8.1 Introduction

Recall conditional probability (Ch. 4).

Example: Fair die Event A = \{4\}

Event describing our previous knowledge \(B = \{2, 4, 6\} \)

\[
P(A/B) = \frac{N_{AB}}{N_B} = \frac{N_{AB}/N_S}{N_B/N_S} = \frac{P(AB)}{P(B)}
\]

Two ways.

(i) Toss die 50 times

- Count total # of 2's, 4's, and 6's (reduced sample size)
- Count total # of 4's.

Get \(\frac{N_A}{N_B} = \frac{9}{25} \approx 0.3 \) (relative frequency interpretation of probability)

(ii) \(P(A/B) = \frac{P(AB)}{P(B)} \)

\(AB \cap B = \{4\} \cap \{2, 4, 6\} = \{4\} \)

\[
P(A|B) = \frac{P(AB)}{P(B)} = \frac{1/6}{3/6} = \frac{1}{3}
\]

(using original sample space \(S \))
Ex: 2 (Example 4.2) - A compound experiment

\[
\begin{array}{c|c}
R - p_1 & R - p_2 \\ \hline
B - (1-p_1) & B - (1-p_2) \\
\hline
\text{Urn 1} & \text{Urn 2}
\end{array}
\]

Compound experiment performed:
Urn chosen at random
Then a ball selected from that urn.

\[
P[\text{red ball selected} ~ | ~ A] = P[A/\text{Urn 1}]P[\text{Urn 1}] + P[A/\text{Urn 2}]P[\text{Urn 2}]
\]

Ex: 3 (ch.8) Expt: choose 2 coins; toss it 4 times

\[
P[\{2 or more heads\}] = ?
\]

but can depend on which coin chosen of course.

So more convenient to define

conditional PMF

\[
P_X[k | \text{coin 1 chosen}]
\]

\[
P_X[k | \text{coin 2 chosen}]
\]
since we know which coin was chosen, we have the PMF, which in this case is the binomial. Once we have the PMFs we use the law of total probability:

\[P(A) = \sum_{i=1}^{N} P(A|B_i)P(B_i) \quad (4.4) \]

to define:

\[p_X[k] = p_X[k|\text{coin 1 chosen}] P(\text{coin 1 chosen}) \]
\[+ p_X[k|\text{coin 2 chosen}] P(\text{coin 2 chosen}) \]

and finally:

\[P(X \geq 2) = \sum_{k=2}^{\infty} p_X[k] \]
8.3 CPMF

Introductory example:

(i) Choose coin 1 or coin 2 \(S_X = \{1, 2\} \)

\[p_X(i) = \begin{cases} \alpha, & i = 1 \\ (1-\alpha), & i = 2 \end{cases} \quad (8.1) \]

(ii) Second part of experiment: Toss coin 4 times.

but # of heads = \(Y \) \(S_Y = \{0, 1, 2, 3, 4\} \)

so, sample space \(S_{X,Y} = S_X \times S_Y \)

\[
\begin{aligned}
 & & & Y \\
 & & 4 & 3 & 2 & 1 & 0 \\
 & 4 & & & & & \\
 & 3 & & & & & \\
 & 2 & & & & & \\
 & 1 & & & & & \\
 & 0 & & & & & \\
 & & & & x & & \\
 & & 1 & 2 & & & \\
 \end{aligned}
\]

Clearly,

\[P[A] = P[\{2\text{ heads or more}\}] \]

\[= \sum_{(i,j): (i,j) \in A} p_{x,y}[i,j] \]
\[
= \sum_{i=1}^{2} \sum_{j=2}^{4} p_{X,Y}(x_i, y_j) \quad (8.2)
\]

To determine \(p_{X,Y}(x_i, y_j)\),

Recall (Ch.7) \(p_{X,Y}(x_i, y_j) = P[X=x_i, Y=y_j]\)

\(p_X(x_i) = P[X=x_i]\)

Using definition of conditional probability of \(X_{\text{obs}}\):

\(p_{X,Y}(x_i, y_j) = P[X=x_i, Y=y_j]\)

\(= P[\{s : X(s) = x_i, Y(s) = y_j\}]\)

\(= P[\{s : Y(s) = y_j\} / \{s : X(s) = x_i\}] \cdot P[X=x_i]\)

\(= P[Y=y_j / X=x_i] \cdot P[X=x_i]\) \quad (8.3)

Now for a given value of \(X = x_i\),

\(P[Y=y_j / X=x_i] = \binom{4}{j} p_i^j (1-p_i)^{4-j} \quad (8.4)\)

This has the usual properties of a \(PMF\):

\(0 \leq P[Y=y_j / X=x_i] \leq 1 \quad \sum_{j=0}^{4} P[Y=y_j / X=x_i] = 1\)
So we define,

\[P_{Y/X}[j|i] = P[Y=j/X=i] \]

So, using (8.3)

\[P_{X,Y}[i,j] = P_{Y/X}[j|i] \cdot P_X[i] \]

\[= \binom{4}{j} p_1^j (1-p_1)^{4-j} \cdot \alpha \quad i=1, j=0,1,\ldots, 4 \]

\[= \binom{4}{j} p_2^j (1-p_2)^{4-j} \cdot \alpha \quad i=2, j=0,1,\ldots, 4 \]

Finally,

\[P[A] = \sum_{j=2}^{4} P_{X,Y}[i,j] + \sum_{j=2}^{4} P_{X,Y}[2,j] \]

We also have, from (8.5),

\[P_{Y/X}[j,i] = \frac{P_{X,Y}[i,j]}{P_X[i]} \quad (8.6) \]
6.4 Joint, Conditional & Marginal PMFs

More generally,

$$P_{y/x} (y_j|x_i) = \frac{P_{x,y}(x_i,y_j)}{P_x(x_i)} \quad \text{(8.7)}$$

Once again, $P_{y/x}(y_j|x_i)$ valid PMFs for $x_i = \text{constant}$.

For the previous example,

$$\sum_{j=0}^{10} P_{y/x}(y_j|x) = 1$$

$$\sum_{j=-6}^{6} P_{y/x}(y_j|x) = 1$$

Example 8.1

<table>
<thead>
<tr>
<th>x</th>
<th>$j=1$</th>
<th>$j=2$</th>
<th>$j=3$</th>
<th>$j=4$</th>
<th>$j=5$</th>
<th>$j=6$</th>
<th>$j=7$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
</tbody>
</table>

Outcomes
want conditional PMF of the sum if known sum x.

Let y be the sum.

$X = 1$, sum even;
$X = 0$, sum odd.

want $P_{Y/X}[j | 11]$ and $P_{Y/X}[j | 10]$ $j = 2, 3, \ldots, 12$

$S_Y = \{2, 3, \ldots, 12\}$

we know,

$$P_{Y/X}[j | 11] = \frac{P_{X,Y}[1, j]}{P_X[1]}, j = 2, 4, 6, 8, 10, 12$$

$$P_{Y/X}[j | 11] = \begin{cases} \frac{1}{18}, & j = 2 \\ \frac{3}{18}, & j = 4 \\ \frac{5}{18}, & j = 6 \\ \frac{5}{18}, & j = 8 \\ \frac{3}{18}, & j = 10 \\ \frac{1}{18}, & j = 12 \\ \end{cases} \frac{1/36}{(2/36, 1/2)}$$

$$\sum_j P_{Y/X}[j | 11] = 1$$

(Note: $\sum_j P_{Y/X}[j | 11] = 1$)
Simly:

\[P_{Y/X} [y_j / x_i] = \begin{cases}
\frac{2}{15}, & j = 3 \\
\frac{4}{15}, & j = 5 \\
\frac{6}{15}, & j = 7 \\
\frac{4}{15}, & j = 9 \\
\frac{2}{15}, & j = 11
\end{cases} \]

Note: Could also have obtained the conditional PMF based on the restricted sample space.

Property 8.1

\[P_{Y/X} [y_j / x_i] = \frac{P_{X,Y} [x_i, y_j]}{\sum_{j} P_{X,Y} [x_i, y_j]} \]

\[P_{X/Y} [x_i / y_j] = \ldots \]

Property 8.2

\[P_{X/Y} [x_i, y_j] = \frac{P_{Y/X} [y_j / x_i] \cdot P_x [x_i]}{P_y [y_j]} \]
Property 3.3: Bayes' Rule

\[
P_{Y|x}(y_j|x_i) = \frac{P_{X|Y}(x_i|y_j) \cdot P_Y(y_j)}{\sum_j P_{X|Y}(x_i|y_j) \cdot P_Y(y_j)}
\]

Property 4.1

\[
P_{X,Y}(x_i,y_j) = P_{Y|x}(y_j|x_i) \cdot P_X(x_i)
\]
\[
P_{X,Y}(x_i,y_j) = P_{X|Y}(x_i|y_j) \cdot P_Y(y_j)
\]

Property 4.5

\[
P_Y(y_j) = \sum_i P_{X,Y}(x_i,y_j)
\]
\[
= \sum_i P_{Y|x}(y_j|x_i) \cdot P_X(x_i)
\]
8.5 Probability Calculations using conditionals.

Ex. 8.2 PMF for $Z = \max(X, Y)$

8.6 Mean of conditional PMF.

Recall: Conditional PMF $P_{Y/X}[y_j|x_i]$ is a PMF for fixed i.

So we can determine its mean.

$$E_{Y/X}[Y/X_i] = \sum_j y_j P_{Y/X}[y_j|x_i]$$

Conditional mean will of course depend on x_i.

Ex. 8.3 (Ref. Ex. 8.1 Two dice tossed.

Y-sum $X = 1$ if sum even,

$\sum = 0$ if sum odd.

We obtained the conditional PMFs $P_{Y/X}[y_j|1]$,

$P_{Y/X}[y_j|0]$

$$E_{Y/X}[Y|1] = 2 \left(\frac{1}{18} \right) + 4 \left(\frac{3}{18} \right) + 6 \left(\frac{5}{18} \right) + 8 \left(\frac{7}{18} \right) + 10 \left(\frac{9}{18} \right) + 12 \left(\frac{11}{18} \right) = 7$$

$E_{Y/X}[Y|0] = \ldots \ldots$
Can also redefine the variance of the conditional PMF.

\[
\text{var} \left(Y | x_i \right) = \sum (y_j - E_{Y|x_i}[Y|x_i])^2 \cdot p_{Y|x_i}(y_j|x_i)
\]

NOTE: \(E_{Y|x_i}[Y|x_i] \) is the mean of conditional PMF. This also referred to as **conditional mean**.

Can also determine conditional mean of \(g(Y) \).

i.e. \(E_{Y|x_i}[g(Y)|x_i] \) in the usual way.

Ex. 8.4

Two dice

- Die 1: 1, 2, 3, 4, 5 or 6 dots.
- Die 2: 2, 3, 2, 3, 2 or 3 dots.

\{ Each face equally likely \}

Die selected randomly.

Expected # of dots for the tossed die?

So, want conditional mean.
Set up: \[X = \begin{cases} 1 & \text{if die 1 chosen} \\ 2 & \text{if die 2 chosen} \end{cases} \]

\[Y = \# \text{ of dots observed} \]

Want \(E_{Y|x}[Y|1] \) and \(E_{Y|x}[Y|2] \)

For die 1, \(P_{Y|x}[j|1] = \frac{1}{6}, \quad j = 1, 2, \ldots, 6 \)

For die 2, \(P_{Y|x}[j|2] = \frac{1}{2}, \quad j = 2, 3 \)

So: \[E_{Y|x}[Y|1] = \sum_{j=1}^{6} y_j \cdot \frac{1}{6} = \frac{1}{6} + \frac{2}{6} + \frac{3}{6} + \cdots + \frac{6}{6} = \frac{21}{6} = \frac{7}{2} \]

\[E_{Y|x}[Y|2] = \sum_{j=2}^{3} y_j \cdot \frac{1}{2} = \frac{2}{2} = 1 \]

Text shows a comparison with actual simulation.

Figs. 8.7(a), 8.7(b)

Also, can simplify \(E[Y] - \text{unconditional mean} \):

\[E[Y] = \sum_{x} E_{Y|x}[Y|x_i] \cdot P_X[x_i] \quad (8.35) \]
8.8 Real-World Example - Modeling Human Learning

(Using a Bayesian framework).

Example: Coin Tossing.

Wish to determine whether coin fair (p = \frac{1}{2})
or not (p \neq \frac{1}{2}).

Method 1: Toss coin repeatedly. (Relative frequency interpretation)
Obtain \(p \approx \frac{N_{\text{H}}}{N_{\text{Total}}} \)

Method 2: Let \(p \) be a RV. Then we find its
PMF.

\[\begin{array}{c}
p & 1 - p \\
\uparrow & \downarrow \\
\text{our state of knowledge} & \text{low on the value of } p. \\
\end{array} \]

\[\begin{array}{c}
\uparrow & \downarrow \\
\text{our state of knowledge higher.} \\
\end{array} \]
1. Assume some PMF for p.

$$P(y_j) = \frac{1}{n+1}, \quad y_j = 0, 1, \ldots, \frac{n-1}{m}, 1$$

2. Now do the "learning experiments".

Toss coin N times.

Let $X = \# \text{ of heads}$.

We know X binomially distributed.

But require probability of heads (y_j).

Since this not known, we have

$$P(x|y_i|y_j) = \binom{N}{i} (y_j)^i (1-y_j)^{N-i}, \quad i = 0, 1, \ldots, N$$

3. We want to learn "y_j" as we toss the coin and count the number of heads.
That is, we are interested in the PMF of \(Y \) (probability of Heads) after observing outcomes of \(N \) tosses. So we want \(P_{Y|x}[y_j|i] \) — called the posterior PMF since determined after experimentation.

Using Bayes rule:

\[
P_{Y|x}[y_j|i] = \frac{P_{X|Y}[i|y_j] \cdot P_Y(y_j)}{\sum_j P_{X|Y}[i|y_j] \cdot P_Y(y_j)}
\]

\[
= \frac{(N_i y_j (1-y_j)^{N-i} \cdot \frac{1}{M+1}}{\sum_{j=0}^{M} \left(\begin{array}{c} N \\ i \end{array} \right) y_j^i (1-y_j)^{N-i} \cdot \frac{1}{M+1}}
\]

\(y_j = \frac{0, 1, \ldots, 1}{M} \)

\(i = 0, 1, \ldots, N \)
and

\[P_{Y|X}[y_j|i] = \frac{y_j^i (1-y_j)^{(N-i)}}{\sum_{j=0}^{m} y_j^i (1-y_j)^{(N-i)}} \]

\[y_j = 0, \frac{1}{m}, \ldots, 1 \]

\[i = 0, 1, \ldots, N \]

3.10: Posterior PMFs for coin tossing analogy to human learning – coin to be fair. The \(y_j \)'s are possible probability values for a head.

Figure 8.11: Posterior PMFs for coin tossing analogy to human learning – coin appears to be weighted. The \(y_j \)'s are possible probability values for a head.