DEVELOPMENT OF A LOW COST, LOW POWER WIRELESS SENSOR NETWORK

Seth Maciejowski UVM ECE

Outline

- Motivation
 - Existing WSN (Wireless Sensor Networks)
 - Objectives of research
- Background
 - WSN Layouts
 - Communications protocols
 - Energy efficient design
- UVM-WSN Architectural Design
- Power Testing
- Conclusion
Motivation for WSN Research

- Collect data over a wide area on a near continuous basis
- Remove the need for wire infrastructure
- Monitor environmental parameters
- Rapidly growing area of interest
- Improve upon existing designs by emphasizing low cost and low energy requirements

Existing Wireless Sensor Networks

- NASA : JPL units monitor conditions in a botanical garden
- 19 Nodes in the network
- Multi-Hop topology
Existing Wireless Sensor Networks (cont.)

- UC-Berkeley: MOTES used to monitor Snow Petral nests on a remote island without intrusion into the nesting environment
- 30+ nodes
- Multi-Hop topology

Specific Sensor Nodes

- UCLA WINS units
 - Early sensor node
- UC-Berkeley MOTES
 - Common platform
- Microstrain Glink
 - Application specific accelerometer
- JPL sensors
 - Deep space use
Problems With Existing WSN

- Not cost effective for large scale deployment
 - MOTES ~$215 per unit w/o sensor board
- Power intensive
 - MOTES last only a few days at a high polling rate on two AA batteries
 - Minimize battery swapping
- Application specific

Research Objectives

- Develop low cost, low power hardware that can implement a hierarchical WSN
- Develop a power aware routing algorithm for moving data within a WSN
- Evaluate the cost and power performance of this WSN with respect to other implementations
Background

- WSN Layouts
- Energy Conservation
 - Energy Aware Routing Protocols
 - Hardware design
- Communication Protocols

WSN Layouts: Hierarchical Layout vs. Flat Layout

![Diagram showing WSN Layouts: Hierarchical Layout vs. Flat Layout](image)
WSN Layouts: Flat Topology

- Uniform node functionality/complexity
- Advantages
 - All nodes can perform any task
- Disadvantages
 - Every node has same functionality and consequently, the same power and cost requirements

WSN Layouts: Hierarchical

- Nodes are divided into different classes
 - Classes based upon functionality
- Advantages:
 - Cost can be reduced since all nodes do not have to meet the same functionality requirements
 - Power is reduced as a result of reduced functionality
- Disadvantages
 - All nodes can’t perform all tasks (e.g. packet forwarding)
Energy Conservation: LEACH

- An energy aware routing protocol
 - Attempts to prolong Quality of Service (QOS) by distributing power intensive tasks
 - All nodes take turns acting as the Clusterhead (the most power intensive node)
 - Results in better QOS over lifetime
- picture

LEACH Effectiveness

![LEACH Effectiveness Graph](image-url)

- MTE routing
- LEACH routing

Number of Active Nodes vs. Epochs
Energy Conservation: LEACH Disadvantages

- Assumes all nodes can hear each other
 - Not a good assumption in a random distribution of sensor nodes
 - All nodes must be constantly listening to facilitate routing protocol
- Assumes a large difference between Clusterhead power requirements and normal node power requirements
 - A small difference would cause LEACH to be less effective

Energy Conservation: Energy Aware Routing

- Similar to LEACH, but is not restricted to clusters
- Advantages
 - Attempts to gain better QOS
- Disadvantages
 - Overhead to implement protocol may overcome the effectiveness of the protocol
Energy Conservation: Hardware Design

- Hardware “Hooks”
 - Allows software developer to closely control the hardware layer on the node
 - Turn up and down the power of the transmitter
 - Power up and down the receiver
 - Put the microcontroller in sleep mode
 - Power down sensor units

Communications Protocols: TDMA

- Time Domain Multiple Access
- Uses a synchronization pulse to assign frames in which a user may transmit on the channel.
 - Advantage
 - Fully utilizes the channel when loads are high
 - Disadvantage
 - Everyone must be able to hear the pulse for synchronization
ALOHA

- Contention based protocol
 - A user uses the channel whenever they are ready
 - If a collision occurs, the user retransmits
- Suitable for low channel loads
 - Higher channel loads result in more collisions

ALOHA Throughput

![Graph showing ALOHA throughput vs number of nodes]
Communications Protocols: CSMA

- Carrier Sense Multiple Access
- Contention Based Protocol
 - User listens before transmitting. If the channel is being used, the user will wait a random amount of time before attempting to transmit again.
- Fewer collisions on the channel

CSMA Throughput
UVM-WSN

- How are some of these ideas used in the UVM implementation?
 - ALOHA Protocol
 - CSMA Protocol
 - Hierarchical Layout
 - Voluntary Assisted Energy Aware Routing Protocol (VAARP)
 - Close Software Control of the Hardware Layer

UVM-WSN Hierarchy of Nodes

- Increasing Node Density in a WSN

- Low Cost, Low Functionality, Low Power Sensor Nodes
- Mid Range Nodes
- High Cost Functionality and power
- Gateway
- Hopper
- ALOHA

Node Type
ALOHA Protocol in the UVM-WSN

- Lowest class of node "ALOHA" node implements the ALOHA protocol with no provision for collision
 - Acceptable because data is non-critical
 - Permits the node to be developed with no receiver.
 - Expect channel load to be low (40 sensors, 0.06 Erlangs)
- Reduces cost and power
 - Less hardware to buy and power
The *ALOHA* Node

- **Reduced Cost**
 - MOTES ~$215 – *ALOHA* ~$15
- **Reduced Power**
 - No Receiver
- **Small Size**
- **Simple Bus Interface**
 - I2C to sensor board

ALOHA Node Summary

- Reads sensor array and transmit data very infrequently (≈14 seconds)
 - Temperature data in natural setting
- Sleeps until watchdog timeout between transmissions
 - Current is less then 1 mA in sleep mode
CSMA Protocol in the UVM-WSN

- Middle class of nodes: The “Hopper”
- Can perform packet forwarding tasks for the ALOHA node that result in a multi-hop network topology
 - Implements the CSMA protocol for transmission as a receiver is available on the node.
 - No additional costs in power or node price to implement CSMA

The *Hopper* Node

- Similar in functionality to a MOTES node in a flat topology network
- Cost: ~$29
- Small Size
- Simple bus interface
 - I2C to sensor board or to *Gateway* node
Hopper Node Summary

- Transmits data from its own sensor array infrequently (~14 seconds)
- Forwards packets from *ALOHA* or other *Hopper* nodes in a multi-hop network topology
- Can interface to a *Gateway* board to transfer data to an Ethernet connection

Oscilloscope Demo

- Shows multi-hop action of *Hopper* nodes
- Shows data packets transmitted from *ALOHA* nodes
The *Gateway Node*

- Provides an interface between the UVM-WSN and the outside world
- Implements a TCP/IP stack
- Communicates with a *Hopper* node via the I2C bus
- Implements the power-over-Ethernet standard

Gateway Node Summary

- Most complex of the hierarchy of nodes
- Allows direct connection to the UVM-WSN as an embedded server
- Not complete at this time
Website Demo

- HP VEE polling a serial connection to the WSN.
- Updates periodically on incoming *Hopper* packets

VAARP

- Attempts to improve QoS through energy aware routing
- Implemented by the *Hopper* nodes to distribute packet forwarding tasks
- Compares rates of discharge and attempts to offload serviced *ALOHA* nodes to other *Hopper* nodes on the channel.
VAARP behavioral description

- Every epoch of operation, each *Hopper* node attempts to offload responsibility for an *ALOHA* node to another *Hopper* node.
- Transmits a packet with the *ALOHA* node to be offloaded and the current rate of discharge.
- Other nodes choose to assist or not based upon their own discharge rates.

VAARP Simulation Setup

- VAARP Simulations
 - VAARP vs. Static
 - VAARP vs. Static for midlife
 - VAARP performance vs. number of *Hopper* nodes
VAARP vs. Static Simulation Results

VAARP vs. Static Simulation Results (cont.)
VAARP Simulation Result
Midlife Die-off Scenario

VAARP vs. Number of Hopper Nodes

- Determines the number of *Hopper* nodes required to support an array of 40 *ALOHA* nodes.
VAARP simulation conclusions

- VAARP is effective in adapting to recover from lost *Hopper* nodes
- VAARP performs best under the following criteria:
 - A large discrepancy between normal operating power and transmission power in a node
 - Large differences in the number of *ALOHA* nodes that different *Hopper* nodes are servicing.
- VAARP may not be worth the trouble for small networks
 - Shown by simulation and verified in power test

Power Test

- Quantifies the power consumption of the UVM-WSN
- Compares power performance of UVM-WSN with and without VAARP
- Compares UVM-WSN with Berkeley MOTES network
UVM-WSN Power Test Setup

- Monitored behavior of *Hopper* nodes during each epoch
- Monitored power consumption of *ALOHA* nodes as a whole and an individual unit
- Recorded values for each epoch

Results from UVM-WSN

<table>
<thead>
<tr>
<th>Node</th>
<th>On</th>
<th>Off</th>
<th>Lifetime hrs (two AA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hopper</td>
<td>42 mW</td>
<td>33 mW</td>
<td>108</td>
</tr>
<tr>
<td>ALOHA</td>
<td>8 mW</td>
<td>.16 mW</td>
<td>23016</td>
</tr>
</tbody>
</table>
Results from MOTES

<table>
<thead>
<tr>
<th>Mode</th>
<th>listening (no sensor board) mW</th>
<th>listening (with sensor board) mW</th>
<th>Lights on listening mW</th>
<th>Full Transmit mW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power</td>
<td>49.41</td>
<td>58.24</td>
<td>99.45</td>
<td>123</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Network</th>
<th>Total Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>UVM-WSN with static routing</td>
<td>104.01 mW</td>
</tr>
<tr>
<td>UVM-WSN with VAARP</td>
<td>104.07 mW</td>
</tr>
<tr>
<td>TinyDB MOTES network</td>
<td>407.66 mW</td>
</tr>
</tbody>
</table>

Results of VAARP testing

- **Case 1 Static Routing**
- **Case 1 VAARP**
- **Case 3 Static Routing**
- **Case 3 VAARP**
Conclusions From Research

- Hierarchical design effective in reducing cost and energy consumption of WSN
- UVM-WSN implements a reduced cost, low power sensor network
- VAARP effective only under certain scenarios or circumstances such as harsh environments

Future Work

- Change transmitter/receiver pair to higher bit rate more reliable set and a different modulation scheme
- Implement an error correction and checking code
- Implement data logging functionality in the Hopper node firmware
- Optimize Hopper node for power efficiency
Future Research

- Investigate power scavenging to remove demand for batteries
- Direct node localization using GPS or echo location
- Investigate frequency hopping in WSN
- Determine throughput of a channel when users are utilizing both the ALOHA and CSMA protocols

Acknowledgements

- Dr. Jeff Frolik
- Benji Capsuto, Christian Bird, Mike Fortney, and Jake Galbreath
- Dr. Dryver Huston, Dr. Ronald Williams, and Dr. Dale Critchlow
Questions?